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Abstract
Research utilizing magnetic resonance imaging (MRI) has been crucial to the understanding of the neuropathological mecha-
nisms behind and clinical identification of Alzheimer’s disease (AD) and mild cognitive impairment (MCI). MRI modalities 
show patterns of brain damage that discriminate AD from other brain illnesses and brain abnormalities that are associated 
with risk of conversion to AD from MCI and other behavioural outcomes. This review discusses the application of various 
MRI techniques to and their clinical usefulness in AD and MCI. MRI modalities covered include structural MRI, diffusion 
tensor imaging (DTI), arterial spin labelling (ASL), magnetic resonance spectroscopy (MRS), and functional MRI (fMRI). 
There is much evidence supporting the validity of MRI as a biomarker for these disorders; however, only traditional structural 
imaging is currently recommended for routine use in clinical settings. Future research is needed to warrant the inclusion for 
more advanced MRI methodology in forthcoming revisions to diagnostic criteria for AD and MCI.
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Introduction

Alzheimer’s disease (AD) is a neurodegenerative disorder 
and the most common cause of dementia. Mild cognitive 
impairment (MCI) is the prodromal form of AD and is 
characterized by neurocognitive dysfunction, but not to the 

extent of dementia, and minor difficulties in functional abil-
ity. The neuropathological hallmarks of AD include neu-
rofibrillary tangles (NFTs) and beta-amyloid (Aβ) neuritic 
plaques. The AD brain contains increased levels of hyper-
phosphorylated tau. In this state, the main functions of nor-
mal tau are disrupted and the polymerization of paired heli-
cal filaments or NFTs, which are correlated with synaptic 
loss, occurs. Overproduction of amyloid precursor protein 
is also characteristic in AD, which results in elevated levels 
of Aβ42 and neuritic plaque formation. This exerts oxida-
tive and inflammatory stress, which contributes to neuronal 
damage [1].

Through the in vivo visualization of neuropathology, 
magnetic resonance imaging (MRI) research has been para-
mount in the clinical identification of MCI and AD. Diag-
nostic criteria recommend the consideration of abnormalities 
on structural MRI [2, 3]. More advanced MR techniques 
include diffusion tensor imaging (DTI), arterial spin label-
ling (ASL), magnetic resonance spectroscopy (MRS), and 
functional magnetic resonance imaging (fMRI), which have 
not yet been established for routine clinical use. The aim of 
this review will be to provide an overview of the application 
of the various MR modalities in AD and MCI. Another clini-
cally useful neuroimaging technology is positron emission 
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tomography (PET) [4]; however, this is beyond the scope of 
the current work.

Structural imaging

Structural imaging modalities reveal brain atrophy and other 
static tissue abnormalities (Table 1; Fig. 1). Progression 
of atrophy follows Braak staging [5] and is first observed 
in medial temporal lobe (MTL) structures, including the 
entorhinal cortex (ERC) and hippocampus [6, 7]. Com-
pared to controls, hippocampal volumes for AD patients are 
reduced by 26–27% and ERC volumes by 38–40% [6]. MCI 

patients show intermediate levels of MTL atrophy [7]. The 
presence of diffuse hippocampal atrophy is related to deficits 
in executive functioning and memory for AD patients [8]. 
As the disease progresses, atrophy advances to the remain-
der of the MTL where grey matter (GM) loss occurs in the 
medial temporal gyrus, parahippocampus, parahippocampal 
and fusiform gyri, and temporal pole [9]. Nesteruk and col-
leagues [10] found that MTL atrophy discriminates those 
who will convert from MCI to AD from non-converters. 
It also differentiates AD from dementia with Lewy bodies 
(DLB) and Parkinson’s disease with dementia (PDD), where 
AD patients show the greatest reductions in hippocampal 
volume [11, 12].

Table 1  Research studies examining region-specific patterns of neuropathology in AD and MCI using structural MRI

Study Imaging modality Sample Main findings

Du et al. [6] Structural MRI 20 AD, 25 cognitively normal (CN) AD patients demonstrated GM loss in the 
hippocampus and ERC, with a higher atro-
phy rate in the ERC

Pennanen et al. [7] Structural MRI 48 AD, 65 MCI, 59 controls Hippocampal and ERC atrophies were found 
in AD and MCI patients, with MCI patients 
showing intermediate levels

Li et al. [9] Structural MRI 64 AD, 72 controls (14 with AD on follow-up) Early in the course of AD, the ERC and hip-
pocampus are the primary sites of atrophy. 
In later stages, other MTL brain structures 
are affected

Cavedo et al. [13] Structural MRI 19 AD, 19 controls GM reductions were demonstrated in the 
amygdala for AD patients

Thomann et al. [14] Structural MRI 21 early AD, 21 controls Atrophy of the olfactory bulb tract was found 
for AD patients

Guo et al. [15] Structural MRI 13 AD, 14 controls GM reductions in parahippocampal gyrus, 
middle and superior temporal gyrus, insula, 
parietal lobule, thalamus, hippocampus, and 
cingulate gyrus were demonstrated for AD 
patients

De Jong et al. [16] Structural MRI 69 probable AD, 70 subjects with memory 
complaints

Compared to subjects with memory com-
plaints, GM loss was shown in the putamen 
and thalamus for AD patients

Kilimann et al. [19] Structural MRI 134 AD, 41 MCI, 148 controls Volumetric reductions in brain areas within 
the basal forebrain cholinergic system were 
displayed for AD and MCI patients

Duarte et al. [20] Structural MRI 14 probable AD, 32 MCI, 14 controls Frontal, parietal and temporal lobe atrophies 
were found for AD patients and frontal and 
temporal GM losses were present for MCI 
patients

Vasavada et al. [22] Structural MRI 15 AD, 21 MCI, 27 CN Brain atrophy was displayed in the hippocam-
pus and the primary olfactory cortex for AD 
and MCI patients

Tabatabaei-Jafari et al. [23] Structural MRI 191 AD, 398 MCI, 229 CN GM reductions in the cerebellum were found 
for AD patients

Lee et al. [24] Structural MRI 50 AD, 50 controls Volumetric reductions in the brainstem were 
displayed in AD patients

Capizzano et al. [27] Structural MRI 81 probable AD, 19 controls A high degree of WMHs was found in AD 
patients: 70% in the frontal lobe, 22% in the 
parietal lobe, 3.5% in the temporal lobe, and 
1% in the occipital lobe
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Additional limbic structures including the amygdala, 
olfactory bulb tract, cingulate gyrus, and thalamus are 
impacted in AD [13–16]. GM loss in these regions is 
associated with cognitive dysfunction and neuropsychiat-
ric symptomatology [17, 18]. As the disease progresses, 
atrophy spreads to cortical regions. Frontal, parietal, and 
temporal brain areas experience volumetric reductions, 
and so do the putamen and basal forebrain cholinergic 
system [15, 16, 19, 20]. Cholinergic abnormalities in AD 
have been further highlighted through the use of molecular 
imaging technologies [21]. Atrophy is also found in the 
primary olfactory cortex [22], in addition to lower-level 
brain areas including the cerebellum and brainstem [23, 
24]. MCI is notable for frontal and temporal GM loss, and 
atrophy in the primary olfactory cortex and some basal 
forebrain cholinergic system structures [19, 20, 22]. No 

volumetric differences were found between AD patients 
with and without hypertension [25].

Structural MRI scans can also display white matter 
hyperintensities (WMHs), which indicate demyelination 
and axonal loss [26] (Table 1; Fig. 2). Compared to con-
trols, patients with AD demonstrate greater WMHs with 
the majority in frontal lobe [27]. For patients along the 
AD spectrum, WMHs correlate with hippocampal atrophy 
[28], in addition to neuropsychological impairment and 
psychiatric disturbances [29, 30]. Considering differen-
tial diagnoses, patients with vascular dementia (VaD) have 
higher volumes of WMHs than in AD [31]. Periventricular 
WMHs are predictive of progression from MCI to AD, 
with an increase of one point in WMH rating associated 
with a 59% increased risk of phenoconversion [32].

Fig. 1  T1-weighted MRI imaging using an MPRAGE (Magnetisation Prepared Rapid Gradient Echo) sequence shows decreased GM volume in 
an AD patient compared to a healthy control and intermediate GM decline in a patient with MCI

Fig. 2  T2-weighted MRI imaging using a FLAIR (Fluid Attenuated Inversion Recovery) sequence shows increased WMHs in an AD patient 
compared to a healthy control and intermediate levels of WMHs in a patient with MCI
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Advanced MR techniques

DTI utilizes the displacement of water molecules to meas-
ure white matter tract integrity (Table 2). The primary 
metrics of DTI include mean diffusivity (MD) or the aver-
age rate of water molecule diffusivity and fractional ani-
sotropy (FA) or the variability associated with diffusion 
[33]. In AD, increased MD is noted in frontal, occipital, 
parietal, and temporal areas including the hippocampus; 
however, in MCI, these increases are absent in frontal and 
occipital regions. In AD, decreased FA is localized to the 
cingulum, corpus callosum, superior lateral fasciculus and 
uncinate fasciculus and throughout temporal, occipital and 
frontal white matter. Patients with MCI display a similar 
pattern, but with no FA irregularities in occipital and pari-
etal areas [34]. MD increases in the basal forebrain are 
associated with increased risk of progression from MCI 
to AD [35], and FA and MD abnormalities are associated 
with memory and executive dysfunction [36, 37]. Diffu-
sivity metrics also discriminate AD from other dementias 
where reduced FA is present in frontal areas for fronto-
temporal dementia (FTD) compared to AD, and increased 
MD is present in parietal and temporal regions for AD in 
contrast to DLB [38, 39]. However, DTI technology shows 
particular sensitivity to motion, which could lead to arti-
facts that might skew results. Comparatively long scanning 
times could increase the probability of such errors [40], 

indicating that this technique may not be particularly well 
suited for practical clinical use.

Changes in the neurovasculature system, namely in cer-
ebral blood flow (CBF), can be detected by MR imaging 
using ASL (Table 2). Notable hypoperfusion is present in the 
posterior cingulate, precuneus, and, occipital, temporal, pari-
etal cortical areas in AD and MCI, and in frontal and orbito-
frontal cortex, and the hippocampus in AD. AD patients 
demonstrate greater CBF declines in cortex found in tem-
poral, parietal, frontal, and orbitofrontal areas, in addition to 
the thalamus and middle temporal structures including the 
hippocampus and amygdala when compared to those with 
MCI [41–43]. Limited increases in CBF have been shown 
in the basal ganglia, amygdala, and hippocampus in MCI, 
and anterior cingulate in AD, which suggests compensatory 
mechanisms within the brain for cerebrovascular damage 
[43]. Regarding disease-related outcomes, regional hypop-
erfusion is associated with progression from MCI to AD, 
in addition to cognitive and functional deterioration [44]. 
Measures of perfusion on ASL also discriminate AD from 
VaD, DLB, and FTD. Differential patterns of CBF reduction 
were shown in frontal and temporal areas when compar-
ing AD to VaD. Whilst demonstrating the highest degree of 
hypoperfusion throughout the brain, temporal regions are 
spared in DLB. In comparison, reduced temporal and frontal 
CBF is characteristic of AD and FTD, respectively [45, 46]. 
ASL utilizes magnetically labelled blood water as a tracer 
and individual differences in blood vessel properties could 

Table 2  Research studies examining region-specific patterns of neuropathology in AD and MCI using advanced MR modalities

Study Imaging 
modal-
ity

Sample Main findings

Sexton et al. [34] DTI Meta-analysis of 41 studies MD increases were found globally in WM in AD and in temporal and 
parietal WM in MCI. FA decreases were found in temporal, occipital and 
frontal WM in AD and frontal and temporal WM in MCI

Alexopoulos et al. [41] ASL 19 AD, 24 MCI, 24 controls Hypoperfusion was noted in parietal, temporal, and occipital cortex, and the 
precuneus in MCI and AD patients

Mak et al. [42] ASL 13 AD, 15 controls Reductions in CBF were found in the hippocampus and posterior cingulate 
for patients with AD

Dai et al. [43] ASL 37 AD, 29 MCI, 38 controls In MCI, decreases in CBF were found in the posterior cingulate and precu-
neus and increases in CBF were found in the hippocampus, basal ganglia, 
and amygdala. In AD decreases in CBF were found in frontal, parietal, 
temporal, orbitofrontal cortex, and the precuneus and increases in CBF 
were found in the anterior cingulate gyrus. Compared to MCI patients, AD 
patients showed decreased CBF in temporal, parietal, frontal orbitofrontal 
cortex and temporal regions such as hippocampus, amygdala, and thala-
mus

Zhu et al. [49] MRS 14 AD, 22 CN elderly subjects Increased mI, mI/Cr and decreased NAA and NAA/Cr ratios were found in 
parietal areas for patients with AD. NAA/mI ratios were the best classifier 
for AD

Tumati et al. [50] MRS Meta-analysis of 29 studies In the posterior cingulate, Cho/Cr ratios are increased, and NAA/mI ratios 
are decreased for AD patients. In the hippocampus, mI/Cr ratios are 
increased for AD patients
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lead to variable transit times for its delivery. This might 
result in artificial changes in signal intensity, which a clini-
cian might mistake as a disease-related abnormality in CBF. 
Another barrier to the employment of ASL in clinical prac-
tice is its low signal to noise ratio, which leads to reductions 
in image quality [47].

MRS assesses brain metabolite levels and its parameters 
are expressed as concentration or ratios to standardize values 
[48] (Table 2). When examining region-specific changes in 
AD, lower N-acetylaspartate (NAA) and NAA/Creatine(Cr) 
and higher myo-Inositol (mI) and mI/Cr ratios are found in 
parietal regions. Parietal NAA/mI ratios are also deemed 
a valid discriminator of AD [49]. In MCI, NAA/mI ratios 
are lowered and Choline(Cho)/Cr ratios are increased in the 
posterior cingulate gyrus, whereas mI/Cr ratios are increased 
in the hippocampus [50]. Clinically, decreased NAA markers 
are predictive of phenoconversion to dementia and cognitive 
dysfunction [51, 52]. NAA/Cr and NAA/mI ratios discrimi-
nate AD from VaD, and glutamate/Cr ratios differentiate 
DLB from AD. Metabolic ratios are substantially lower in 
AD patients compared to VaD, but higher in widespread 
brain regions relative to DLB [53, 54]. Whilst MRS is able 
to study molecular processes in the brain non-invasively 
without exposure to ionizing radiation, this technique is lim-
ited by its low sensitivity [55]. Resultant attenuated signal 
strength makes it difficult to recommend its use by clinicians 
for diagnostic purposes in AD and MCI.

Functional imaging

Functional MRI generates dynamic representations of brain 
activity through bold oxygen level-dependent (BOLD) sig-
nal, which measures changes in blood flow and volume [56] 
(Table 3). On memory tasks, patients with AD show no or 
less activation of hippocampal and other medial temporal 
structures when compared to controls. Findings of increased 
brain activity during encoding in parietal and posterior 
cingulate areas indicate some degree of compensation by 
the brain in lieu of medial temporal dysfunction [57, 58]. 
Patients with MCI have demonstrated similar hippocampal 
deactivation to those with AD during recall [59], but with 
hyperactivation during encoding phases [60, 61], which 
might underline mechanistic compensation in prodromal 
stages. fMRI findings in AD extend to tasks of working 
memory, visuospatial ability, attention, semantic knowledge, 
and motor performance [62–66] and in MCI tasks of atten-
tion and working memory [62, 64, 67].

Resting-state fMRI provides insight into functional con-
nectivity among structures in intrinsic networks implicated 
in the AD spectrum (Table 3). One particular network of 

interest is the default mode network (DMN), where increased 
neural activity is shown at rest compared to task engage-
ment. Brain structures implicated in the DMN include the 
posterior cingulate cortex (PCC), ventral anterior cingulate 
cortex, medial prefrontal cortex, inferior parietal cortex, 
dorsolateral prefrontal cortex, inferolateral temporal cor-
tex, orbitofrontal cortex, and parahippocampal gyrus [68]. 
Abnormal coactivation at rest in AD was shown between 
medial temporal structures such as the hippocampus and 
entorhinal cortex and the posterior cingulate cortex (PCC) 
[69]. This evidences the significance of the MTL in the 
DMN and establishes altered connectivity in the DMN as 
an indicator for AD. Levels of PCC connectivity to other 
DMN structures is associated with neuropsychological 
impairment and declines in PCC-retrosplenial cortex con-
nectivity is associated with lower Aβ levels in the CSF for 
AD patients [70].

There is a decrease in posterior and an increase in ante-
rior and ventral DMN regions early in AD. 2–4 years later 
all regions show marked declines in connectivity [71]. This 
supports the notion that early mechanistic compensation 
occurs intrinsically within the DMN, but eventually global 
neurodegeneration occurs. This pattern of DMN dysfunction 
has been noted in MCI with limited increases in activation 
between DMN structures, indicative of prodromal compen-
satory mechanisms [72, 73]. Other large-scale brain net-
works that show disruption in AD include thalamo-cortical, 
dorsal attention, visual, and sensorimotor ones [74–76]. 
Whilst fMRI provides unique insight into pathophysiology, 
its use in the clinical routine is not supported [77]. This is 
due to primary limitations including a low signal or contrast 
to noise ratio and the questionable validity of BOLD signal 
as a measure of neuronal activity. Unexplained variability in 
this signal might result from hemodynamic factors that are 
not controlled for [78].

Conclusions

AD is a devastating illness that leads to cognitive impair-
ment and functional deterioration. MRI modalities have 
shown substantial utility in identifying biomarkers for AD 
and MCI pathology. These, in turn, can be used to improve 
diagnostic accuracy and develop novel molecular-based 
treatment interventions. Whilst only traditional structural 
modalities are recommended for diagnosis in clinical prac-
tice of MCI and AD, there is a need for further research 
to overcome methodological limitations of more advanced 
ones, which provide unique insight into disease-specific pat-
terns of neuropathology. This should hopefully warrant their 
inclusion in diagnostic criteria for MCI and AD in the future.
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Table 3  Research studies examining region-specific patterns of neuropathology in AD and MCI using functional MRI

Study Imaging modality Sample Main findings

Small et al. [57] Task-based fMRI 4 AD, 12 subjects with isolated memory 
decline, 4 controls

Reduced activation in regions of the hippocam-
pus was found during a facial recognition 
task for AD patients. A similar finding was 
observed for patients with isolated memory 
decline

Sperling et al. [58] Task-based fMRI 7 AD, 10 young control subjects, 10 elderly 
control subjects

Reduced activation in hippocampal areas and 
increased activation in the parietal regions and 
the posterior cingulate were found during an 
encoding task for AD patients

Petrella et al. [59] Task-based fMRI 13 AD, 34 aMCI, 28 healthy elderly control 
subjects

Decreased activation was found in middle 
temporal areas and increased activation was 
shown in posteromedial cortical regions for 
AD patients during an encoding task. Patients 
with MCI showed an intermediate but similar 
profile

Trivedi et al. [60] Task-based fMRI 16 aMCI, 23 controls Reduced activation was noted in frontal areas 
and increased activation was present in 
hippocampal areas for MCI patients dur-
ing an encoding task. During recognition, 
this region-specific pattern of activation was 
reversed

Parra et al. [61] Task-based fMRI 10 AD, 10 MCI, 10 controls Comparing control subjects and MCI patients, 
decreased activation was found in the hip-
pocampus and parahippocampus in AD 
patients during incidental encoding. Increased 
activation was found for MCI patients relative 
to control subjects

Yetkin et al. [62] Task-based fMRI 11 AD, 10 MCI, 9 controls Increased activation in frontal and temporal 
regions, fusiform gyrus, and anterior cingulate 
gyrus was displayed for AD and MCI patients 
during a working memory task. For selected 
areas, MCI patients showed greater activation 
than AD patients

Thiyagesh et al. [63] Task-based fMRI 12 AD, 13 elderly control subjects Declines in activation in parietal, parieto-occip-
ital, and premotor cortical areas and increased 
activation of additional parietal structures 
was found in AD during an observational 
visuospatial task

Li et al. [64] Task-based fMRI 10 AD, 9 MCI, 9 elderly control subjects Reduced activation was found in prefrontal 
cortical areas for AD patients and increased 
activation in these same regions was found 
for MCI patients during a Stoop colour–word 
interference task

McGeown et al. [65] Task-based fMRI 29 AD, 19 controls No activation in parietal regions and decreased 
activation in prefrontal areas was found for 
AD patients during a semantic knowledge task

Vidoni et al. [66] Task-based fMRI 9 AD, 10 controls Reduced activation was found in the premotor 
and supplementary motor regions, and the 
cerebellum, whilst increased activation was 
evidenced in the primary motor cortices for 
AD patients during a motor task

Van Dam et al. [67] Task-based fMRI 8 aMCI, 8 controls Increased activation was shown in the tempero-
parietal junction, angular gyrus, and precu-
neus, whereas attenuated activation was seen 
in prefrontal regions and the anterior cingulate 
for aMCI patients during an attentional 
(executive control, alerting and orienting) task
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Table 3  (continued)

Study Imaging modality Sample Main findings

Greicius et al. [69] Resting-State fMRI 15 AD, 18 controls Reduced connectivity was shown between 
medial temporal structures and the posterior 
cingulate cortex for AD patients

Damoiseaux et al. [71] Resting-State fMRI Baseline: 21 AD, 18 controls
Follow-up: 11 AD, 10 controls

Compared to control subjects at baseline, 
declines in connectivity were seen in the 
posterior DMN and increased activation was 
found for areas within the ventral and anterior 
DMN for AD patients. Compared to control 
subjects at follow-up, decreased connectivity 
between regions within the anterior, ventral, 
and posterior DMN in addition to sensori-
motor network were shown for AD patients. 
Compared to control subjects, declines in acti-
vation over time were greater for AD patients

Yu et al. [72] Resting-State fMRI 32 AD, 26 MCI, 58 controls Increased connectivity between posterior 
cingulate and non-DMN regions but declines 
in activation between the posterior cingulate 
and areas within the DMN were found for AD 
patients. An opposite pattern of connectivity 
was shown for MCI patients

Das et al. [73] Resting-State fMRI 17 aMCI, 31 controls A greater degree of functional connectivity was 
shown within regions belonging to the medial 
temporal lobe, whereas declines in activity 
were seen between DMN and medial temporal 
structures for MCI patients

Zhou et al. [74] Resting-State fMRI 35 AD, 27 MCI, 27 controls Declines in functional connectivity within a 
range of regions within the thalamo-cortical 
network and thalamo-DMN were observed for 
AD patients. MCI patients showed similar but 
intermediate deteriorations

Li et al. [75] Resting-State fMRI 15 AD, 16 healthy elderly control subjects Declines in functional connectivity within a 
range of regions within the dorsal attention 
network but not the ventral attention network 
were found for AD patients

Zheng et al. [76] Resting-State fMRI 32 AD, 38 controls Disturbed functional connectivity was seen in 
several main networks including the DMN, 
visual network, and sensorimotor network in 
AD patients

http://www.fnih.org
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